基于基質輔助激光解吸電離飛行時間質譜的病原菌耐藥性分析研究進展

楊文濤 張建中 肖迪

引用本文: 楊文濤, 張建中, 肖迪. 基于基質輔助激光解吸電離飛行時間質譜的病原菌耐藥性分析研究進展[J]. 疾病監測. DOI: 10.3784/j.issn.1003-9961.2019.11.007 shu
Citation:  Wentao Yang, Jianzhong Zhang and Di Xiao. Progress in research of antibiotic resistance of pathogens based on MALDI-TOF MS[J]. Disease Surveillance. DOI: 10.3784/j.issn.1003-9961.2019.11.007 shu

基于基質輔助激光解吸電離飛行時間質譜的病原菌耐藥性分析研究進展

    作者簡介: 楊文濤,女,內蒙古自治區赤峰市人,在讀碩士研究生,主要從事病原微生物的質譜分析工作,Email:[email protected];
    通信作者: 張建中, [email protected] 肖迪, [email protected]
  • 基金項目: 國家科技重大專項(No. 2018ZX10712001006012,No. 2018ZX10733402003002)

摘要: 基質輔助激光解吸電離飛行時間質譜(MALDI-TOF MS)微生物識別分析系統現已發展為成熟的技術體系,其憑借簡單、快速、經濟、高通量以及高敏感性、高特異性的特點,在病原菌耐藥性分析研究領域展現了巨大的潛力。 近年來,基于MALDI-TOF MS的病原菌耐藥性研究也取得了長足進展。 本文將從定性和定量分析的角度闡述MALDI-TOF MS在病原菌耐藥性分析領域的研究進展,并對其應用前景進行展望。

English

    1. [1]

      程古月, 李俊, 谷宇鋒, 等. 世界衛生組織、歐盟和中國抗生素耐藥性監測現狀[J]. 中國抗生素雜志,2018,43(6):665–674. DOI:10.3969/j.issn.1001?8689.2018.06.004.
      Cheng GY, Li J, Gu YF, et al. Antimicrobial resistance surveillance systems of WHO, EU and China[J]. Chin J Antibiotics, 2018,43(6):665–674. DOI:10.3969/j.issn.1001?8689.2018.06.004.

    2. [2]

      車潔, 陳霞, 李娟, 等. 細菌耐藥性檢測技術方法及其應用[J]. 疾病監測,2017,32(9):757–763. DOI:10.3784/j.issn.1003?9961.2017.09.013.
      Che J, Chen X, Li J, et al. Application of different detection techniques for bacterial drug resistance test[J]. Dis Surveill, 2017,32(9):757–763. DOI:10.3784/j.issn.1003?9961.2017.09.013.

    3. [3]

      Edwards-Jones V, Claydon MA, Evason DJ, et al. Rapid discrimination between methicillin-sensitive and methicillin-resistant Staphylococcus aureus by intact cell mass spectrometry[J]. J Med Microbiol, 2000,49(3):295–300. DOI:10.1099/0022?1317?49?3?295.

    4. [4]

      中國臨床微生物質譜共識專家組. 中國臨床微生物質譜應用專家共識[J]. 中華醫院感染學雜志,2016,26(10):Ⅰ–Ⅷ.
      China Consensus Expert Group on Clinical Microbiological Mass Spectrometry. Expert consensus on the application of microbiological mass spectrometry in China[J]. Chin J Nosocomiol, 2016,26(10):Ⅰ–Ⅷ.

    5. [5]

      肖迪. 基于肽質量指紋譜的病原微生物識別及分型研究[D]. 北京: 中國疾病預防控制中心傳染病預防控制所, 2014
      Xiao D. Studies on identification and typing of pathogenic microorganisms based on peptide mass fingerprinting[D]. Beijing: National Institute for Communicable Disease Control and Prevention (ICDC), China CDC, 2014.

    6. [6]

      Xiao D, Zhang HF, He LH, et al. High natural variability bacteria identification and typing: Helicobacter pylori analysis based on peptide mass fingerprinting[J]. J Proteomics, 2014,98:112–122. DOI:10.1016/j.jprot.2013.11.021.

    7. [7]

      Walker J, Fox AJ, Edwards-Jones V, et al. Intact cell mass spectrometry (ICMS) used to type methicillin-resistant Staphylococcus aureus: media effects and inter-laboratory reproducibility[J]. J Microbiol Methods, 2002,48(2/3):117–126. DOI:10.1016/S0167?7012(01)00316?5.

    8. [8]

      Majcherczyk PA, McKenna T, Moreillon P, et al. The discriminatory power of MALDI-TOF mass spectrometry to differentiate between isogenic teicoplanin-susceptible and teicoplanin-resistant strains of methicillin-resistant Staphylococcus aureus[J]. FEMS Microbiol Lett, 2006,255(2):233–239. DOI:10.1111/j.1574?6968.2005.00060.x.

    9. [9]

      Lasch P, Fleige C, St?mmler M, et al. Insufficient discriminatory power of MALDI-TOF mass spectrometry for typing of Enterococcus faecium and Staphylococcus aureus isolates[J]. J Microbiol Methods, 2014,100:58–69. DOI:10.1016/j.mimet.2014.02.015.

    10. [10]

      Lau AF, Wang HH, Weingarten RA, et al. A rapid matrix-assisted laser desorption ionization-time of flight mass spectrometry-based method for single-plasmid tracking in an outbreak of carbapenem-resistant Enterobacteriaceae[J]. J Clin Microbiol, 2014,52(8):2804–2812. DOI:10.1128/JCM.00694?14.

    11. [11]

      Griffin PM, Price GR, Schooneveldt JM, et al. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry to identify vancomycin-resistant enterococci and investigate the epidemiology of an outbreak[J]. J Clin Microbiol, 2012,50(9):2918–2931. DOI:10.1128/JCM.01000?12.

    12. [12]

      Wang YR, Chen Q, Cui SH, et al. Characterization of Staphylococcus aureus isolated from clinical specimens by matrix assisted laser desorption/ionization time-of-flight mass spectrometry[J]. Biomed Environ Sci, 2013,26(6):430–436. DOI:10.3967/0895?3988.2013.06.003.

    13. [13]

      Nakano S, Matsumura Y, Kato K, et al. Differentiation of vanA-positive Enterococcus faecium from vanA-negative E. faecium by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry[J]. Int J Antimicrob Agents, 2014,44(3):256–259. DOI:10.1016/j.ijantimicag.2014.05.006.

    14. [14]

      Wang LJ, Lu XX, Wu W, et al. Application of matrix-assisted laser desorption ionization time-of-flight mass spectrometry in the screening of vanA-positive Enterococcus faecium[J]. Eur J Mass Spectrom (Chichester) , 2014,20(6):461–465. DOI:10.1255/ejms.1298.

    15. [15]

      胡燕燕, 蔡加昌, 周宏偉, 等. 基質輔助激光解吸/電離飛行時間質譜儀快速鑒別甲氧西林耐藥和甲氧西林敏感金黃色葡萄球菌的研究[J]. 中華微生物學和免疫學雜志,2015,35(1):42–45. DOI:10.3760/cma.j.issn.0254?5101.2015.01.009.
      Hu YY, Cai JC, Zhou HW, et al. Rapid identification of methicillin-resistant Staphylococcus aureus and methicillin-sensitive Staphylococcus aureus strains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry[J]. Chin J Microbiol and Immun, 2015,35(1):42–45. DOI:10.3760/cma.j.issn.0254?5101.2015.01.009.

    16. [16]

      Mather CA, Werth BJ, Sivagnanam S, et al. Rapid detection of vancomycin-intermediate Staphylococcus aureus by matrix-assisted laser desorption ionization-time of flight mass spectrometry[J]. J Clin Microbiol, 2016,54(4):883–890. DOI:10.1128/JCM.02428?15.

    17. [17]

      Asakura K, Azechi T, Sasano H, et al. Rapid and easy detection of low-level resistance to vancomycin in methicillin-resistant Staphylococcus aureus by matrix-assisted laser desorption ionization time-of-flight mass spectrometry[J]. PLoS One, 2018,13(3):e0194212. DOI:10.1371/journal.pone.0194212.

    18. [18]

      李媛睿, 俞靜, 劉瑛. 基質輔助激光解析電離飛行時間質譜在革蘭陰性桿菌對β內酰胺類抗生素耐藥性檢測中的應用進展[J]. 中國感染與化療雜志,2016,16(2):229–234. DOI:10.16718/j.1009?7708.2016.02.019.
      Li YR, Yu J, Liu Y. Matrix-assisted laser desorption ionization time of flight mass spectrometry for detection of β-lactam resistance in gram-negative bacilli[J]. Chin J Infect Chemother, 2016,16(2):229–234. DOI:10.16718/j.1009?7708.2016.02.019.

    19. [19]

      Wright GD. Bacterial resistance to antibiotics: enzymatic degradation and modification[J]. Adv Drug Deliv Rev, 2005,57(10):1451–1470. DOI:10.1016/j.addr.2005.04.002.

    20. [20]

      Burckhardt I, Zimmermann S. Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours[J]. J Clin Microbiol, 2011,49(9):3321–3324. DOI:10.1128/JCM.00287?11.

    21. [21]

      Hrabak J, Walková R, ?tudentová V, et al. Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry[J]. J Clin Microbiol, 2011,49(9):3222–3227. DOI:10.1128/JCM.00984?11.

    22. [22]

      Hrabak J, Studentova V, Walkova R, et al. Detection of NDM-1, VIM-1, KPC, OXA-48, and OXA-162 carbapenemases by matrix-assisted laser desorption ionization-time of flight mass spectrometry[J]. J Clin Microbiol, 2012,50(7):2441–2443. DOI:10.1128/JCM.01002?12.

    23. [23]

      Papagiannitsis CC, Studentova V, Izdebski R, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry meropenem hydrolysis assay with NH4HCO3, a reliable tool for direct detection of carbapenemase activity[J]. J Clin Microbiol, 2015,53(5):1731–1735. DOI:10.1128/JCM.03094?14.

    24. [24]

      Kempf M, Bakour S, Flaudrops C, et al. Rapid detection of carbapenem resistance in Acinetobacter baumannii using matrix-assisted laser desorption ionization-time of flight mass spectrometry[J]. PLoS One, 2012,7(2):e31676. DOI:10.1371/journal.pone.0031676.

    25. [25]

      Jung JS, Popp C, Sparbier K, et al. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid detection of β-lactam resistance in Enterobacteriaceae derived from blood cultures[J]. J Clin Microbiol, 2014,52(3):924–930. DOI:10.1128/JCM.02691?13.

    26. [26]

      Johansson A, Nagy E, Soki J. Instant screening and verification of carbapenemase activity in Bacteroides fragilis in positive blood culture, using matrix-assisted laser desorption ionization-time of flight mass spectrometry[J]. J Med Microbiol, 2014,63(8):1105–1110. DOI:10.1099/jmm.0.075465?0.

    27. [27]

      de Carolis E, Paoletti S, Nagel D, et al. A rapid diagnostic workflow for cefotaxime-resistant Escherichia coli and Klebsiella pneumoniae detection from blood cultures by MALDI-TOF mass spectrometry[J]. PLoS One, 2017,12(10):e0185935. DOI:10.1371/journal.pone.0185935.

    28. [28]

      Lee AWT, Lam JKS, Lam RKW, et al. Comprehensive evaluation of the Mbt Star-Bl module for simultaneous bacterial identification and β-lactamase-mediated resistance detection in gram-negative rods from cultured isolates and positive blood cultures[J]. Front Microbiol, 2018,9:334. DOI:10.3389/fmicb.2018.00334.

    29. [29]

      Dortet L, Potron A, Bonnin RA, et al. Rapid detection of colistin resistance in Acinetobacter baumannii using MALDI-TOF-based lipidomics on intact bacteria[J]. Sci Rep, 2018,8(1):16910. DOI:10.1038/s41598?018?35041?y.

    30. [30]

      Sparbier K, Lange C, Jung J, et al. MALDI biotyper-based rapid resistance detection by stable-isotope labeling[J]. J Clin Microbiol, 2013,51(11):3741–3748. DOI:10.1128/JCM.01536?13.

    31. [31]

      Jung JS, Eberl T, Sparbier K, et al. Rapid detection of antibiotic resistance based on mass spectrometry and stable isotopes[J]. Eur J Clin Microbiol Infect Dis, 2014,33(6):949–955. DOI:10.1007/s10096-013?2031?5.

    32. [32]

      Marinach C, Alanio A, Palous M, et al. MALDI-TOF MS-based drug susceptibility testing of pathogens: the example of Candida albicans and fluconazole[J]. Proteomics, 2009,9(20):4627–4631. DOI:10.1002/pmic.200900152.

    33. [33]

      De Carolis E, Vella A, Florio AR, et al. Use of matrix-assisted laser desorption ionization-time of flight mass spectrometry for caspofungin susceptibility testing of Candida and Aspergillus species[J]. J Clin Microbiol, 2012,50(7):2479–2483. DOI:10.1128/JCM.00224?12.

    34. [34]

      Vella A, De Carolis E, Vaccaro L, et al. Rapid antifungal susceptibility testing by matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis[J]. J Clin Microbiol, 2013,51(9):2964–2969. DOI:10.1128/JCM.00903?13.

    35. [35]

      Lange C, Schubert S, Jung J, et al. Quantitative matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid resistance detection[J]. J Clin Microbiol, 2014,52(12):4155–4162. DOI:10.1128/JCM.01872?14.

    36. [36]

      Justesen US, Acar Z, Sydenham TV, et al. Antimicrobial susceptibility testing of Bacteroides fragilis using the MALDI Biotyper antibiotic susceptibility test rapid assay (MBT-ASTRA)[J]. Anaerobe, 2018,54:236–239. DOI:10.1016/j.anaerobe.2018.02.007.

    37. [37]

      Sparbier K, Schubert S, Kostrzewa M. MBT-ASTRA: a suitable tool for fast antibiotic susceptibility testing?[J]. Methods, 2016,104:48–54. DOI:10.1016/j.ymeth.2016.01.008.

    38. [38]

      Sauget M, Bertrand X, Hocquet D. Rapid antibiotic susceptibility testing on blood cultures using MALDI-TOF MS[J]. PLoS One, 2018,13(10):e0205603. DOI:10.1371/journal.pone.0205603.

    39. [39]

      Vatanshenassan M, Boekhout T, Lass-Fl?rl C, et al. Proof of concept for MBT ASTRA, a rapid matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS)-Based method to detect caspofungin resistance in Candida albicans and Candida glabrata[J]. J Clin Microbiol, 2018,56(9):e00420–18. DOI:10.1128/JCM.00420?18.

    40. [40]

      Vatanshenassan M, Boekhout T, Meis JF, et al. Candida auris identification and rapid antifungal susceptibility testing against echinocandins by MALDI-TOF MS[J]. Front Cell Infect Microbiol, 2019,9:20. DOI:10.3389/fcimb.2019.00020.

    41. [41]

      Hou TY, Chiang-Ni C, Teng SH. Current status of MALDI-TOF mass spectrometry in clinical microbiology[J]. J Food Drug Anal, 2019,27(2):404–414. DOI:10.1016/j.jfda.2019.01.001.

    1. [1]

      龔杰張沈茜張慧芳肖盟何利華趙飛徐英春張建中肖迪 . 基于基質輔助激光解吸電離飛行時間質譜的克柔念珠菌遺傳分化研究. 疾病監測, 2019, 34(11): 969-973. DOI: 10.3784/j.issn.1003-9961.2019.11.006

    2. [2]

      張慧芳龔杰張炳華張建中肖迪 . 基于MALDI-TOF MS預提取樣本制備法廢棄成分識別病原菌的方法建立及識別能力評價. 疾病監測, 2019, 34(11): 964-968. DOI: 10.3784/j.issn.1003-9961.2019.11.005

    3. [3]

      吳勇 . 肝硬化并發自發性腹膜炎腹水的病原菌及大腸埃希菌耐藥性分析. 疾病監測, 2012, 27(12): 990-992. DOI: 10.3784/j.issn.1003-9961.2012.12.019

    4. [4]

      封會茹曲梅耿榮秦萌余紅尉秀霞趙偉邢洪光楊軍勇董曉根趙建忠 . 2010-2012年北京市豐臺區感染性腹瀉病原菌分布及耐藥性分析. 疾病監測, 2013, 28(2): 96-100. DOI: 10.3784/j.issn.1003-9961.2013.2.004

    5. [5]

      屠鴻翔吳慶陳櫟江鄒安慶 . 413株血培養分離菌的菌種分布及耐藥性分析. 疾病監測, 2012, 27(10): 760-763. DOI: 10.3784/j.issn.1003-9961.2012.10.003

    6. [6]

      厲小玉岳美娜王云橋趙仕勇蔣茂瑩 . 2008-2012年杭州市兒童感染性腹瀉的志賀菌和沙門菌變遷及耐藥性分析. 疾病監測, 2014, 29(5): 364-368. DOI: 10.3784/j.issn.1003-9961.2014.05.008

    7. [7]

      沈麗珍張愛鳴陳素菜李少禧周鐵麗夏菲 . 急性腸炎患者副溶血弧菌的流行病學與耐藥性分析. 疾病監測, 2014, 29(1): 56-57. DOI: 10.3784/j.issn.1003-9961.2014.01.015

    8. [8]

      趙紅慶徐萍周聲安胡守奎 . 耐甲氧西林金黃色葡萄球菌不同來源株耐藥性及流行特征分析. 疾病監測, 2017, 32(7): 603-608. DOI: 10.3784/j.issn.1003-9961.2017.07.018

    9. [9]

      王蕾楊紫旋康海全顧兵 . 某教學醫院重癥監護病房與普通病房細菌分布及耐藥性比較分析. 疾病監測, 2018, 33(9): 762-765. DOI: 10.3784/j.issn.1003-9961.2018.09.014

    10. [10]

      蔡靜張鑫魏黛玨李凱同重湘 . 甘肅省53株非結核分枝桿菌對9種常用抗結核藥物的敏感性分析. 疾病監測, 2018, 33(6): 515-519. DOI: 10.3784/j.issn.1003-9961.2018.06.016

    11. [11]

      苗元王永全崔京輝吳本和王利萍劉靜張晶波 . 臨床分離志賀菌中產CTX-M型超廣譜β-內酰胺酶基因型及耐藥性分析. 疾病監測, 2013, 28(4): 319-321. DOI: 10.3784/j.issn.1003-9961.2013.4.019

    12. [12]

      陳素菜沈麗珍 . 2013-2017年浙江省溫州市產超廣譜β-內酰胺酶沙門菌的血清型及耐藥性分析. 疾病監測, 2019, 34(1): 62-65. DOI: 10.3784/j.issn.1003-9961.2019.01.015

  • 加載中
計量
  • PDF下載量:  4
  • 文章訪問數:  548
  • HTML全文瀏覽量:  193
  • 引證文獻數: 0
文章相關
通信作者: 陳斌, [email protected]
  • 1. 

    沈陽化工大學材料科學與工程學院 沈陽 110142

  1. 本站搜索
  2. 百度學術搜索
  3. 萬方數據庫搜索
  4. CNKI搜索

/

返回文章

在線交流

广西体彩11选五开奖